Архив рубрики: Блоки подшипниковые уплотнительные

НПЦ АНОД – лидер в российском производстве торцевых уплотнений и подшипников скольжения

ООО Научно-производственный центр «АНОД» основан в 1992 году группой инициативных специалистов, которые занимались разработкой и созданием новейших образцов техники для атомной энергетики. Критерии проектирования торцевых уплотнений и подшипников скольжения остаются актуальными и по сей день, они способствовали становлению НПЦ «АНОД» как одной из ведущих фирм России по проектированию и изготовлению торцевых уплотнений и подшипников скольжения.

Об истории, технологиях и эксклюзивных новинках рассказали специалисты предприятия в ходе конференции «Разработки НПЦ «АНОД» для повышения надежности и безопасности динамического оборудования. Импортозамещающее оборудование».

Генеральный директор ООО НПЦ «АНОД» Е.Е. Бородко открыл совещание . Он отметил, что НПЦ «АНОД» за 25 лет своей деятельности прошел трудный путь. Сегодня АНОД – узнаваемый бренд торцевых уплотнений и подшипников скольжения. Следуя государственной политике импортозамещения, НПЦ «АНОД» в настоящее время производит до 80% запасных частей для зарубежных центробежных насосов. Заказчиками продукции компании являются более 180 предприятий нефтегазового комплекса, химической и нефтехимической промышленности, энергетики, атомной энергетики.

торцевые уплотнения, уплотнения вала, торцовые уплотнения, насосы, насосные агрегаты, купить насос, центробежный насос, подшипники скольжения, импортозамещение, анод нпц, БПУ, блок БПУ, plan API, вспомогательные системы

В производственном цехе НПЦ АНОД

Известные российские компании неслучайно надолго остановили свой выбор на сотрудничестве с НПЦ «АНОД» – компания сохраняет свои традиции и постоянно занимается поиском новых решений, будучи на шаг впереди от своих конкурентов.

В ходе совещания главный конструктор НПЦ «АНОД» А.К. Кулдышев рассказал о типах, особенностях конструкций торцевых уплотнений, опыте их применения на предприятиях нефте- и газопереработки, ПАО «Газпром» и АК «Транснефть», энергетики и других компаниях.

Начальник отдела микрозазорной механики С.Ю. Гераськин рассказал о вспомогательных системах обслуживания торцевых уплотнений по схемам ГОСТ 32600–2013 (API 682), особенностях их применения при использовании одинарных и двойных торцевых уплотнений, их соответствии требованиям ГОСТ 32600–2013 (API 682). .Ю. Гераськин отметил, что НПЦ «АНОД» готов поставлять системы обслуживания торцевых уплотнений в соответствии с требованиями заказчика и ГОСТ 32600–2013 (API 682).

Начальник отдела динамического оборудования В.Г. Маколдин рассказал о применении радиальных и осевых подшипников скольжения в подшипниковых уплотнительных блоках (БПУ). Данные БПУ позволяют выполнить модернизацию известных зарубежных и отечественных двухопорных и консольных (в том числе «герметичных») насосов. Докладчик подчеркнул, что от исходного насоса остаются корпус, крышка насоса и рабочее колесо, при этом в большинстве случаев не обязательно корпус насоса демонтировать с рамы и отсоединять от технологических трубопроводов. В.Г. Маколдин также рассказал, что пять типоразмеров БПУ перекрывают практически весь мощностной ряд центробежных насосов от 10 до 600 кВт. Он также отметил, что высоконадежными БПУ оснащаются насосные агрегаты серии 5 АНГК, выпускаемые НПЦ «АНОД». В рамках государственной программы по импортозамещению отдел занимается разработкой подшипников скольжения для импортных насосов.

Начальник отдела центробежных насосов В.Б. Вненковская рассказала о насосных агрегатах серии АНГК, производимых НПЦ «АНОД». Особый интерес к данной продукции проявили сотрудники проектных организаций, которые обсудили все насущные вопросы в ходе неформального общения, построенного по принципу «вопрос – ответ».

Следует отметить, что качество насосных агрегатов серии АНГК отмечено в протоколе ежегодного опроса крупнейших нефтегазовых компаний в номинации «Центробежные насосы».

Об относительно новом направлении – проектировании и изготовлении сухих газодинамических уплотнений (СГДУ) для нагнетателей газа и центробежных насосов – рассказал руководитель проекта «Системы СГДУ» А.А. Гуляев. Он рассказал об имеющемся опыте, возможностях проектирования, изготовления, ремонтах СГДУ. Привел примеры изготовления новых СГДУ и ремонтов для энергетических и газотранспортных предприятий.

торцевые уплотнения, уплотнения вала, торцовые уплотнения, насосы, насосные агрегаты, купить насос, центробежный насос, подшипники скольжения, импортозамещение, анод нпц, БПУ, блок БПУ, plan API, вспомогательные системы

Юбилейный вечер 25-летие НПЦ АНОД

Участники совещания ознакомились с производственными возможностями НПЦ «АНОД», его испытательными стендами. Так же гости мероприятия приняли участие в праздничном ужине, посвященному 25-летнему юбилею компании, где были вручены почетные грамоты сотрудникам НПЦ «АНОД» от Министерства промышленности, торговли и предпринимательства Нижегородской области, прозвучали добрые слова и поздравления с юбилеем компании. Сотни поздравлений и благодарственных писем по случаю юбилея «АНОД» – серьезное подтверждение не просто в рамках праздника, но и подчеркнутая победа российской компании, продукция и услуги которой по праву стали конкурентоспособными и известными в нашей стране и далеко за ее пределами.

 

 

 

 

Материал опубликован в журнале «Химическая техника» 8, 2017

Модернизация химических насосов с применением БПУ на примере ХБ 160-210

Модернизация химических насосов ХБ, ХБЕ, Х, АХ и других с применением БПУ (блоков подшипниковых уплотнительных). В видео рассказывается об особенностях модернизации химических насосов,  а также результаты внедрения современных технических решений с применением подшипниковых уплотнительных блоков разработки и производства ООО НПЦ «АНОД»

Пуск модернизированного насоса Klaus Union с 90БПУ33 на ПАО «Нижнекамскнефтехим»

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса, герметичный насос, импортозамещение

Пуск модернизированного насоса Klaus Union с 90БПУ33 на Нижнекамскнефтехим

25 марта 2016 года произведен пуск модернизированного насоса Klaus Union с применением блока подшипникового уплотнительного 90БПУ33 на ПАО «Нижнекамскнефтехми». Работает без каких-либо проблем, рабочие параметры в норме.

 

 

 

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса, герметичный насос, импортозамещение

Пуск модернизированного насоса Klaus Union с 90БПУ33 на Нижнекамскнефтехим

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса, герметичный насос, импортозамещение

Пуск модернизированного насоса Klaus Union с 90БПУ33 на Нижнекамскнефтехим

 

Нефтяные консольные насосы с блоками подшипниковыми уплотнительными (БПУ)

С каждым годом к насосам нефтехимических производств и топливно-энергетического комплекса предъявляются все более высокие требования по безопасности и надежности. Оборудование стареет…. Не всем «по карману» приобретение современных, отвечающих всем требованиям дорогостоящих зарубежных насосных агрегатов. В этой ситуации НПЦ «Анод» предлагает модернизировать устаревшие консольные насосы, значительно повысив их моторесурс и надежность при относительно невысоких материальных затратах.

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса

Рис.1. Схема нефтяного консольного насоса НК

Модернизации могут быть подвержены практически любые консольные нефтяные насосы (рисунок 1), поскольку от исходного консольного насоса остаются лишь спиральный отвод, который демонтировать с рамы  и отсоединять от технологических трубопроводов вовсе не обязательно, крышка насоса и рабочее колесо, т.е адаптированная  проточная часть  к условиям технологического процесса.

В зависимости от условий эксплуатации, химического состава и свойств перекачиваемой жидкости НПЦ «Анод» разработал несколько конструктивных схем модернизации  консольных насосов. В основе всех схем лежит один принцип. Вместо подшипников качения, широко использующихся в насосостроении, применяются подшипники скольжения. Статические и динамические радиальные нагрузки воспринимают опорные подшипники скольжения , а осевые – упорный подшипник скольжения. В зазор подшипников скольжения  подается жидкость, которая при вращении ротора образует несущий клин. Несущую способность обеспечивают силы давления, возникающие в жидкостном слое. Данный узел получил название  БПУ — блок подшипниковый уплотнительный .

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса

Рис. 2. Схема модернизированного консольного нефтяного насоса НК

Первая схема модернизации консольных насосов , изображенная на рисунке 2, наиболее простая – для консольных насосов, перекачивающих чистые неагрессивные нефтепродукты с температурой, не превышающей 120 ºС, имеющие хорошие смазывающие свойства, такие как бензины, минеральные масла, дизельное топливо.

Как видно из рисунка, опоры скольжения и упорный подшипник  скольжения находятся в перекачиваемой среде. Приводной конец вала консольного насоса герметизируется двойным торцевым уплотнением или торцевым уплотнением типа «тандем». В данном случае это серийно  выпускаемые НПЦ «Анод» торцевые уплотнения  УТД (двойное торцовое уплотнение) и УТТ (торцовое уплотнение типа ‘Тандем)  для нефтяных насосов  типа НК.  Упорный подшипник скольжения , воспринимающий осевую нагрузку на ротор, находится между значительно разнесенными опорными подшипниками скольжения. Расстояние между опорами (база вала), при такой схеме увеличивается практически вдвое по сравнению с традиционной конструкцией с подшипниками качения. Задний подшипник  скольжения находится непосредственно около рабочего колеса, «сводя на нет» консольный участок вала. Изгибающие усилия действующие при вращении на вал значительно снижаются.

В зависимости от конструкции консольного  насоса такая модернизация может потребовать незначительной доработки крышки насоса.

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса

Рис. 3. Схема модернизации консольного нефтяного насоса НК

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса

Рис. 4. Схема модернизации консольного нефтяного насоса НК для высоких рабочих температур

Вторая схема модернизации консольного насоса, изображенная на рисунке 3, применяется в тех случаях, когда перекачиваемая жидкость содержит значительный объем механических частиц и нет возможности доработать крышку насоса.

Расположение опорных и упорных подшипников скольжения здесь такое же, главное отличие – компоновка торцевого уплотнения.  Здесь не применяется классическое двойное торцевое уплотнение, имеющее две уплотнительные ступени, между которыми подается затворная жидкость под давлением, превышающим давление перекачиваемой жидкости. В нашем случае роль ступеней двойного торцевого уплотнения играют два одинарных торцевых уплотнения герметизирующих подшипниковый блок с двух сторон, подшипники  скольжения  размешены между торцевыми уплотнениями в образовавшейся камере, в которую и подается затворная жидкость. Такая схема обеспечивает стабильную работу подшипников скольжения на чистой среде.

Следующая схема (рисунок 4) применительна к консольным насосам  типа НК перекачивающим жидкости с температурой 120…450 оС. Отличие ее от второй схемы лишь в том, что в сальниковую камеру консольного насоса устанавливается теплообменник, такой же конструкции, что и в торцевых  уплотнениях типа УТТХ (торцовое уплотнение типа ‘Тандем” с холодильником) и УТДХ (двойное торцовое уплотнение с холодильником). Данный теплообменник обладает достаточной эффективностью, чтобы снизить температуру в районе подшипникового уплотнительного блока БПУ до 40…80оС. Такая температура уже приемлема для материала втулок подшипников скольжения.

Подшипники скольжения, разработанные в НПЦ “Анод” имеют как традиционные, так и  оригинальные элементы. Конструкция узла упорного подшипника скольжения  позволяет ему воспринимать  значительные усилия.

Силовая не вращающаяся ступень упорного подшипника скольжения состоит из нескольких колодок опирающихся на металлическое основание. Колодки укладываются в сепаратор, обеспечивающий незначительное их свободное перемещение. Конструкция же вспомогательной ступени, работающая лишь при пуске – остановке значительно упрощена. Вращающиеся элементы подшипника скольжения представляют собой два жестких металлических диска, установленных на ступице, жестко посаженной на вал.

Опорный подшипник скольжения состоит из вращающейся и неподвижной втулки, первая  закреплена на валу, а вторая в свою очередь запрессована в корпусе подшипника, корпус подшипника самоустанавливающийся.

Материалы, используемые в подшипниковом уплотнительном блоке БПУ, позволяют модернизировать и консольные  насосы НК , перекачиваемые слабоагрессивные жидкости. Корпусные элементы БПУ изготовлены из стали 20Х13, вращающиеся втулки подшипников скольжения  и диски упорного подшипника скольжения  – 95Х18. Ответные втулки опорных подшипников скольжения, вкладыши и накладки упорного подшипника скольжения  изготовлены из композиционного фторопластового материала “Флубон”. Это один из вариантов материала пар трения в подшипниках скольжения.

Одним из пунктов модернизации консольных нефтяных насосов является создание вспомогательных систем. В первой схеме подшипники скольжения  работают на перекачиваемой среде, в состав обслуживающей системы входят: фильтр и теплообменник. Конечно, можно значительно упростить систему и исключить эти элементы, но это возможно лишь в случае, когда перекачиваемая жидкость имеет температуру ниже 70оС и содержание механических примесей меньше 1%.

Консольные насосы, модернизированные по второй и третьей схеме, имеют обвязку двойного торцового уплотнения, разница лишь в том, что затворная жидкость подается к каждому подшипнику скольжения  отдельно, что позволяет обеспечить более эффективный отвод тепла от подшипниковых поверхностей и контроль их температурного состояния. В “горячих” консольных   насосах дополнительно установлена система охлаждения сальниковой камеры.

В настоящее время по результатам опытных и экспериментальных разработок отработаны  различные пары трения в подшипниках скольжения: карбид кремния, карбид вольфрама, материалы на основе РЕЕК в различных комбинациях  в зависимости от условий работы.

В заключение стоит отметить, что консольные насосные агрегаты, оборудованные подшипниками скольжения, несомненно, имеют ряд преимуществ перед традиционными конструкциями консольных насосов. К тому же, такая модернизация – один из путей обновления парка насосного оборудования в современных условиях  импортозамещения.  Установка блоков БПУ с подшиниками скольжения производства НПЦ АНОД  на насосы зарубежных производителей позволяет  продлить их ресурс, нередко поднять КПД  и избежать значительных капитальных затрат связанных с заменой этих насосов.

Обращаем внимание, что ООО НПЦ «АНОД» не только модернизирует старые насосы, но и выпускает новые консольные насосные агрегаты серии 5-АНГК с проточными частями как отечественного, так и зарубежного производства с применением блоков подшипниковых уплотнительных (БПУ).

Отзыв Казанской ТЭЦ-3 о модернизации насосов КсВ

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса

Отзыв Казанской ТЭЦ-3 о модернизации насосов КсВ 125-140, Кс 125-140, КсВ 200-130 и Х150-125-315К

О работе насоса

На Казанской ТЭЦ-3 совместно с ООО НПЦ «Анод-ТН» с 2006 года осуществляется модернизация конденсатных насосов типа КсВ 125-140, Кс-125-140, КсВ-200-130, Х150-125-315-К с установкой блоков подшипниковых уплотнительных (БПУ) вместо штатных подшипников качения и сальниковых уплотнений. В течение 3-х лет успешно эксплуатируется 3 модернизированных насоса КсВ-125-140 и 3 насоса Кс-125-140, с апреля 2009 г. 1 насос КсВ-200-130 и 1 насос Х150-125-315-К. Насосы работают устойчиво на минимальных уровнях, вибрации, существенно снизился шум насосных агрегатов, увеличился межремонтный период. Исключается подсасывание воздуха за счет герметизации вала торцовым уплотнением, снижается содержание кислорода в питательной воде.

Хочется отметить высокий научный и производственный потенциал НПЦ «Анод-ТН», Технические разработки очень своевременны. Руководство КТЭЦ-3 отмечает, что модернизация конденсатных насосов совместно с НПЦ «Анод-ТН» — один из самых удачных проектов.

Модернизация масляной системы высокого давления в компрессорах

Кулдышев А. К., Шмыров Е. И.
В ранее опубликованных материалах ООО НПЦ «АНОД» представил ряд статей, посвященных тенденциям развития уплотнительной техники, используемой в нагнетателях и компрессорах, перекачивающих природный газ. В них предложены последние разработки торцовых уплотнений и принципиальные схемы их применения в составе компрессорной установки. Основное внимание было уделено использованию двойных торцовых уплотнений и перспективных блоков подшипниковых уплотнительных (БПУ).
С внедрением в масляные системы компрессоров двойных торцовых уплотнений взамен лабиринтных и щелевых уплотнений достигнуты высокие показатели по межремонтному периоду: в среднем наработка на отказ составляет 25000 ч. При этом значительно снижены утечки масла – с 0,3…0,6 до 0,05…0,1 л/ч на одно уплотнение.
Данная система позволяет реализовать заветную мечту газовиков: при остановах агрегата не требуется сброс перекачиваемого газа из контура нагнетателя.
Изменения коснулись и схемы циркуляции масла через уплотнения.
Традиционной и наиболее распространенной является схема масляной системы, в которой из емкости с запасом масла (маслобака) забирается масло, находящееся под атмосферным давлением. Затем давление поднимается насосами до величины, необходимой для запирания перекачиваемой среды. Смазав и охладив уплотнение, масло сливается в маслобак опять при атмосферном давлении.
При этом потребляемая мощность винтовых насосов высокого давления, используемых в нагнетателях 10 МВт и 16МВт обычно составляет 55 Квт.
Очевидно, что в системе немало единиц оборудования, работающего при высоком давлении. Это бак высокого давления (аккумулятор масла), арматура, трубопроводы и КИП, что позволяет их использовать в предлагаемой нами схеме с двойными торцовыми уплотнениями.
В представленной на рис. 1 схеме масло циркулирует по замкнутому контуру при высоком давлении без сброса его в бак с атмосферным давлением, преодолевая только сопротивление трассы циркуляции. Давление в системе обеспечивается перекачиваемым газом, а мощность насосов расходуется только на прокачку масла при перепаде давления на контурной ступени уплотнения около 0,3 МПа.
Для охлаждения масла в схеме используется теплообменник типа АВО – аппарат воздушного охлаждения, в остальном используется оборудование масляных систем, применяемое в существующих схемах.
Система смазки подшипников компрессора работает по схеме с низким давлением масла аналогично принятой для смазки подшипников привода компрессора.

Торцевые уплотнения, купить торцевое уплотнение, торцевое уплотнение вала, уплотнение вала, торцовые уплотнения, торцовые уплотнения валов, анод уплотнения, механическое уплотнение, импортозамещение в России, импортозамещение в промышленности, газовое уплотнение, уплотнение компрессоров

Принципиальная схема маслоснабжения с использованием двойных торцовых уплотнений типа УТД

Предлагаемая схема маслоснабжения компрессоров может быть реализована при создании новых компрессоров или при выполнении модернизации оборудования, находящегося в эксплуатации. При этом доработок роторов не требуется, двойные торцовые уплотнения устанавливаются вместо существующих уплотнений (щелевых или торцовых). В корпусах компрессоров требуется выполнение канала для отвода масла из уплотнения.
Целесообразность использования двойных торцовых уплотнений подтвердила эксплуатация их на КС Касимовского ПХГ, где введенные в эксплуатацию в 2003 г., эти уплотнения проработали без отказов и ремонтов 25000 ч при более 300 пусках/остановах. Утечка масла, определенная в процессе испытаний, составила 0,022 л/ч, что в 6 раз меньше, чем в одинарных уплотнениях.
Реализация такой системы позволяет также:

  • уменьшить затраты на техническое обслуживание;
  • упростить ряд операций по монтажу, наладке и регулировке уплотнений на объекте; исключаются из конструкции дросселирующие узлы и необходимость тщательной подгонки плавающих колец с минимальными радиальными зазорами;
  • обеспечить лучшие вибрационные характеристики в результате эффективного демпфирования колебаний ротора в широком спектре частот;
  • исключить использование винтовых насосов высокого давления;
  • не сбрасывать перекачиваемый газ из контура компрессора и прилегающих трубопроводов при остановах агрегата.

Достоверность и реализуемость предлагаемых решений подтверждается расчетами и опытом эксплуатации двойных уплотнений как в компрессорах, так и в центробежных насосах. Компрессоры Д203ГЦ1-710, изготовленные Сумским МНПО им. М.В. Фрунзе и оснащенные двойными торцовыми уплотнениями 130УТДГ2, эксплуатируются на СОГ-4 (КС «Ямбургская»). При остановке компрессоров в «Резерв» или для технического обслуживания двигателя газ из корпуса нагнетателя не сбрасывается.
Проведенный расчет характеристик и параметров уплотнительных ступеней одного двойного уплотнения компрессора показывает, что общее количество выделяемого тепла составляет 6…7 КВт в зависимости от режимов работы. При отводе этого тепла масло подогревается на 150С при расходе всего 1м³/ч на каждое уплотнение и 2-х м³/ч — на нагнетатель. При принятых потерях в масляной системе около 0,8 МПа мощность насосов на прокачку 2-х уплотнений нагнетателя составит всего 1 КВт.
При скорости потока масла в трубах около 1 м/с достаточно подвести к каждому уплотнению трубопровод с внутренним диаметром Ду 25, а общий трубопровод на два уплотнения выполнить из труб Ду 35, что вполне реализуемо и оставляет перспективы для оптимизации трассы циркуляции.
Расчет аппарата воздушного охлаждения (АВО) показывает, что при температуре охлаждающего воздуха 300С размеры АВО составят 1000х1000х2000 мм. Мощность вентилятора для прокачки воздуха составит 1,5 КВт. При снижении окружающей температуры до 100С вентилятор может быть остановлен, а отвод тепла будет осуществляться при естественной циркуляции воздуха. Ориентировочная стоимость АВО на тепловую мощность около 15 КВт составляет 0,7-0,8 млн. руб в ценах 2012 года.
Таким образом, основная экономия от применения масляной схемы с двойными торцовыми уплотнениями и замкнутой системой высокого давления будет состоять из экономии электроэнергии на прокачку масла через уплотнения (общая электрическая мощность насосов и АВО масла до 4 КВт вместо 55 КВт до модернизации), исключения сброса газа из контура при останове агрегата на техническое обслуживание двигателя и вспомогательного оборудования, сокращения потерь от простоев компрессора, связанных с его остановками на ремонт и профилактическое обслуживание.
При средней наработке нагнетателя 5000 часов в год окупаемость всей масляной системы по предлагаемой схеме составит 2 года, а ежегодная экономия только за счет уменьшения потребления электроэнергии составит 1 млн. руб.

Торцевые уплотнения, купить торцевое уплотнение, торцевое уплотнение вала, уплотнение вала, торцовые уплотнения, торцовые уплотнения валов, анод уплотнения, механическое уплотнение, импортозамещение в России, импортозамещение в промышленности, газовое уплотнение, уплотнение компрессоров

Cхема масляной системы с использованием блоков подшипниковых уплотнительных БПУ

На рис.2 представлена принципиально новая концепция масляной системы с использованием блоков подшипниковых уплотнительных (БПУ), аналогично используемым в насосах серии 5-АНГК, производства НПЦ «АНОД», хорошо зарекомендовавших себя в эксплуатации. Блоки БПУ компрессора представляют собой цилиндрические корпуса, содержат опорные и упорные подшипники скольжения, изолированные по торцам от атмосферы и перекачиваемого газа одинарными торцовыми уплотнениями. Система находится под давлением перекачиваемого газа, избыточное давление масла над давлением газа обеспечивается напором циркуляционного насоса. В системе предусматривается теплообменник охлаждения масла. Система имеет меньший состав оборудования по сравнению со схемой на рис.1.
Использование модулей БПУ, по опыту применения их в насосах, позволит:

  • создать новую модификацию компрессоров, при этом максимально использовать существующее оборудование масляных систем;
  • уменьшить затраты на техническое обслуживание, упростить наладку и монтаж блоков, упростив ряд операций по монтажу и регулировке на объекте, (блоки поступают на место эксплуатации в состоянии монтажной готовности);
  • уменьшить эксплуатационные затраты;
  • обеспечить лучшие вибрационные характеристики ввиду демпфирования колебаний ротора в широком спектре частот;
  • увеличить ресурс и межремонтный пробег компрессора, в том числе, за счет применения карбидокремниевых подшипников, невосприимчивых к наличию механических примесей в жидкости, в которой они работают;
  • заменить масло, как затворную и смазывающую жидкость, негорючими, незамерзающими смесями на основе водных растворов, что позволит сделать систему пожаробезопасной, уменьшить эксплуатационные расходы.

Предлагаемые принципиальные схемы масляных систем нагнетателей газа, применение компрессоров с блоками подшипниковыми уплотнительными показывают перспективность их дальнейшей разработки и совершенствования. Использование БПУ при минимальном количестве вспомогательных систем и оборудования обеспечивает высокий КПД системы, позволяет повысить надежность оборудования, увеличить общий ресурс до 100 тыс. часов и наработку на отказ до 5 лет, удовлетворить современным требованиям экономичности и экологичности при исключении утечек перекачиваемого газа в окружающую среду.